Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Eur J Pharmacol ; 906: 174233, 2021 Sep 05.
Article in English | MEDLINE | ID: covidwho-1260717

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) is rate-limiting enzyme in biosynthesis of pyrimidone which catalyzes the oxidation of dihydro-orotate to orotate. Orotate is utilized in the biosynthesis of uridine-monophosphate. DHODH inhibitors have shown promise as antiviral agent against Cytomegalovirus, Ebola, Influenza, Epstein Barr and Picornavirus. Anti-SARS-CoV-2 action of DHODH inhibitors are also coming up. In this review, we have reviewed the safety and efficacy of approved DHODH inhibitors (leflunomide and teriflunomide) against COVID-19. In target-centered in silico studies, leflunomide showed favorable binding to active site of MPro and spike: ACE2 interface. In artificial-intelligence/machine-learning based studies, leflunomide was among the top 50 ligands targeting spike: ACE2 interaction. Leflunomide is also found to interact with differentially regulated pathways [identified by KEGG (Kyoto Encyclopedia of Genes and Genomes) and reactome pathway analysis of host transcriptome data] in cogena based drug-repurposing studies. Based on GSEA (gene set enrichment analysis), leflunomide was found to target pathways enriched in COVID-19. In vitro, both leflunomide (EC50 41.49 ± 8.8 µmol/L) and teriflunomide (EC50 26 µmol/L) showed SARS-CoV-2 inhibition. In clinical studies, leflunomide showed significant benefit in terms of decreasing the duration of viral shredding, duration of hospital stay and severity of infection. However, no advantage was seen while combining leflunomide and IFN alpha-2a among patients with prolonged post symptomatic viral shredding. Common adverse effects of leflunomide were hyperlipidemia, leucopenia, neutropenia and liver-function alteration. Leflunomide/teriflunomide may serve as an agent of importance to achieve faster virological clearance in COVID-19, however, findings needs to be validated in bigger sized placebo controlled studies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Crotonates/pharmacology , Enzyme Inhibitors/pharmacology , Hydroxybutyrates/pharmacology , Leflunomide/pharmacology , Nitriles/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Toluidines/pharmacology , Animals , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Crotonates/adverse effects , Crotonates/therapeutic use , Dihydroorotate Dehydrogenase , Drug Repositioning , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/therapeutic use , Humans , Hydroxybutyrates/adverse effects , Hydroxybutyrates/therapeutic use , Leflunomide/adverse effects , Leflunomide/therapeutic use , Nitriles/adverse effects , Nitriles/therapeutic use , Toluidines/adverse effects , Toluidines/therapeutic use
2.
Clin Rheumatol ; 39(9): 2797-2802, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-608431

ABSTRACT

Recurrences of COVID-19 were observed in a patient with long-term usage of hydroxychloroquine, leflunomide, and glucocorticoids due to her 30-year history of rheumatoid arthritis (RA). Tocilizumab was applied and intended to target both COVID-19 and RA. However, disease of this patient aggravated after usage of tocilizumab. After the discussion of a multiple disciplinary team (MDT) including rheumatologists, antimicrobial treatments were applied to target the potential opportunistic infections (Pneumocystis jirovecii and Aspergillus fumigatus), which were authenticated several days later via high throughput sequencing. As an important cytokine in immune responses, IL-6 can be a double-edged sword: interference in the IL-6-IL-6 receptor signaling may save patients from cytokine release storm (CRS), but can also weaken the anti-infectious immunity, particularly in rheumatic patients, who may have received a long-term treatment with immunosuppressive/modulatory agents. Thus, we suggest careful considerations before and close monitoring in the administration of tocilizumab in rheumatic patients with COVID-19. Besides tocilizumab, several disease-modifying antirheumatic drugs (DMARDs) can also be applied in the treatment of COVID-19. Therefore, we also reviewed and discussed the application of these DMARDs in COVID-19 condition.


Subject(s)
Antiviral Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Coronavirus Infections/therapy , Glucocorticoids/therapeutic use , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Viral/therapy , Pulmonary Aspergillosis/diagnosis , Aged , Anti-Bacterial Agents/therapeutic use , Antifungal Agents/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/complications , Aspergillosis , Aspergillus fumigatus , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/physiopathology , Cough/etiology , Cytokine Release Syndrome/etiology , Deprescriptions , Disease Progression , Dyspnea/etiology , Female , Glucocorticoids/adverse effects , Humans , Hydroxychloroquine/therapeutic use , Immunocompromised Host , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Interleukin-6/blood , Leflunomide/adverse effects , Leflunomide/therapeutic use , Lung/diagnostic imaging , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/etiology , Lymphohistiocytosis, Hemophagocytic/immunology , Methylprednisolone/therapeutic use , Oxygen Inhalation Therapy , Pandemics , Pneumocystis carinii , Pneumonia, Pneumocystis/drug therapy , Pneumonia, Pneumocystis/etiology , Pneumonia, Pneumocystis/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/physiopathology , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/etiology , Pulmonary Aspergillosis/immunology , Recurrence , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL